skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Golla, Maximilian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we provide the first comprehensive study of user-chosen 4- and 6-digit PINs ($$\mathbf{n=1220}$$) collected on smartphones with participants being explicitly primed for device unlocking. We find that against a throttled attacker (with 10, 30, or 100 guesses, matching the smartphone unlock setting), using 6-digit PINs instead of 4-digit PINs provides little to no increase in security, and surprisingly may even decrease security. We also study the effects of blacklists, where a set of ``easy to guess'' PINs is disallowed during selection. Two such blacklists are in use today by iOS, for 4-digits (274 PINs) as well as 6-digits (2910 PINs). We extracted both blacklists compared them with four other blacklists, including a small 4-digit (27 PINs), a large 4-digit (2740 PINs), and two placebo blacklists for 4- and 6-digit PINs that always excluded the first-choice PIN. We find that relatively small blacklists in use today by iOS offer little or no benefit against a throttled guessing attack. Security gains are only observed when the blacklists are much larger, which in turn comes at the cost of increased user frustration. Our analysis suggests that a blacklist at about 10\,\% of the PIN space may provide the best balance between usability and security. 
    more » « less
  2. Computing is transitioning from single-user devices to the Internet of Things (IoT), in which multiple users with complex social relationships interact with a single device. Currently deployed techniques fail to provide usable access-control specification or authentication in such settings. In this paper, we begin reenvisioning access control and authentication for the home IoT. We propose that access control focus on IoT capabilities (i. e., certain actions that devices can perform), rather than on a per-device granularity. In a 425-participant online user study, we find stark differences in participants’ desired access-control policies for different capabilities within a single device, as well as based on who is trying to use that capability. From these desired policies, we identify likely candidates for default policies. We also pinpoint necessary primitives for specifying more complex, yet desired, access-control policies. These primitives range from the time of day to the current location of users. Finally, we discuss the degree to which different authentication methods potentially support desired policies. 
    more » « less